Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(33): 41394-41404, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681342

RESUMO

This study presents the extraction of antibiotic amoxicillin (AMX) from aqueous solution employing activated carbons (AC) from olive biomass (OB). Two AC were prepared using ZnCl2 (activator agent), and a conventional muffle furnace (ACF) or microwave oven (ACMW). The structure, morphology, and textural properties from both AC were analyzed by scanning electron microscope (SEM), pH of point-zero-charge (pHPZC), infrared spectroscopy (FTIR), and N2 adsorption/desorption isotherms. AC with mesoporous structures rich in oxygenated groups and high specific area (as high as 1742 m2 g-1) were helpful for the efficient and fast adsorption of AMX. The Avrami kinetic nonlinear equation showed the best fitting for the empirical data when related to the pseudo-1st and pseudo-2nd order. The isothermal experimental data followed the Liu nonlinear model, displaying at 25 °C the maximum sorption capacity of 237.02 and 166.96 mg g-1 for the ACF and ACMW, respectively. An adsorption test with synthetic hospital effluent was carried out to evaluate the possibility of applying both adsorbents in wastewater purification. The purification efficiency was up to 94.4% and 91.96% for ACF and ACMW, respectively. Therefore, the AC obtained from OB (containing a mixture of seed, pulp, and olive peel) has a high potential for application in removing emerging contaminants from the wastewater.


Assuntos
Olea , Poluentes Químicos da Água , Adsorção , Amoxicilina , Biomassa , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética
2.
J Hazard Mater ; 398: 122903, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512448

RESUMO

The present research describes the synthesis of new nanomagnetic activated carbon material with high magnetization, and high surface area prepared in a single pyrolysis step that is used for the carbonization, activation, and magnetization of the produced material. The pyrolysis step of tucumã seed was carried out in a conventional tubular oven at 600 °C under N2-flow. It was prepared three magnetic carbons MT-1.5, MT-2.0, MT-2.5, that corresponds to the proportion of biomass: ZnCl2 always 1:1 and varying the proportion of NiCl2 of 1.5, 2.0, and 2.5, respectively. These magnetic nanocomposites were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, hydrophobic/hydrophilic balance, CHN/O elemental analysis, modified Boehm titration, N2 adsorption-desorption isotherms; and pHpzc. All the materials obtained presented Ni particles with an average crystallite size of less than 33 nm. The MT-2.0 was employed for the removal of nicotinamide and propranolol from aqueous solutions. Based on Liu isotherm, the Qmax was 199.3 and 335.4 mg g-1 for nicotinamide and propranolol, respectively. MT-2.0 was used to treat simulated pharmaceutical industry effluents attaining removal of all organic compounds attaining up to 99.1 % of removal.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cloretos , Fenômenos Magnéticos , Niacinamida , Níquel , Propranolol , Pirólise , Poluentes Químicos da Água/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...